埼玉県環境科学国際センター機関リポジトリ(個別情報)
■ ID 101
■ 種類 論文
■ タイトル Lambの問題に基づくレーリー波複素コヒーレンス関数の離散定式とその応用−空間自己相関法の新しい解釈−
Complex coherence function represented by discrete formula on the basis of Lamb's problem for Rayleigh waves: An application for new interpretation of the spatial autocorrelation method
■ 著者 白石英孝  Hidetaka Shiraishi  埼玉県環境科学国際センター
松岡達郎  Tatsuro Matsuoka  埼玉県環境科学国際センター
   
   
   
   
   
   
   
   
   
■ 出版元 物理探査学会
■ 出版年 2005
■ 誌名・巻・号・年 物理探査、Vol.58、No.2、137-146、2005
■ 抄録・要旨 地下の速度構造を求める微動探査法において、表面波位相速度の分散推定に用いられる空間自己相関法(SPAC法)は、円形アレーの円周観測点を等間隔に配置しなければならないという制約があるため、都市域での使用が困難となる場合がある。この制約の緩和・解消を目的として、本研究ではLambの問題の解析解から複素コヒーレンス関数(CCF)の離散定式を導き、これを用いてSPAC法の詳細メカニズムを解明した。その結果、SPAC法で使われるCCFの方位平均操作の物理的な意味が明らかになるとともに、方位平均の操作自体に制約の原因が内包されていることが判明した。この結果は、方位平均を用いずに位相速度を推定できれば、制約を緩和・解消できる可能性があることを示唆するものである。
The spatial autocorrelation (SPAC) method requires a special circular array where several observation points are equally spaced on the circumference. In order to look for the possibility of developping a new method of array observation with fewer restriction of arrangement than the SPAC method, we proposed a formula of the complex coherence function (CCF) of the Rayleigh wave measured on a couple of observation points located at any place. This formula was derived on the basis of an analytical solution of Lamb’s problem, aiming to study the relation between wave source and observation point. The formula was given as simple discrete representation consisting of the Bessel function of the first kind of zero order J0(kr) (k : wavenumber, r : radius of array) and an infinite series with higher-order Bessel functions. In the SPAC method, by regarding the SPAC coefficient from directional average of CCFs (real part) as J0(kr), phase velocities of Rayleigh waves (wave number k) are calculated. We first studied the relationship between the values of CCF and wave sources located far from a couple of observation points, and found that the values of CCF strongly varies depending on the direction with increase in kr, and also found that such directional properties were mainly caused by the variation of the infinite series in the formula of CCF. Furthermore, we applied the formula to the SPAC method for revealing the mechanism of the directional average and the reason why the SPAC method requires the special circular array with sensors equally spaced on a circle. The results are summarized as follows: 1) The values of the infinite series gets lower enough to be negligible after the directional average of CCFs, so that the SPAC coefficient can be approximated to J0(kr). 2) From the inverse analysis on the condition that the values of the infinite series is equal to zero, it was found that the condition was satisfied not only in the usual SPAC arrays but also in some extra circular arrays consisting of observation points not equally spaced on the circumference. This result suggests the possibility of array design with fewer restriction of arrangement of observation points, using a new algorithm for obtaining J0(kr) without the operation of directional average used in the SPAC method.
■ キーワード Lambの問題、複素コヒーレンス関数、空間自己相関法

| 一覧に戻る |